Genetics and unexplained infant death:genomics in the courtroom
DOI:
https://doi.org/10.13112/pc.1054Keywords:
SINDROM IZNENADNE DOJENAČKE SMRTI; SMRT, IZNENADNA; GENETIKA; SINDROM DUGOG QT INTERVALA; KALMODULINAbstract
Sudden unexplained death in infancy, and particularly sudden infant death syndrome (SIDS), remains one of the most troubling situations in paediatrics, given that the etiology and pathophysiology of SIDS remain unknown in the majority of cases. Particularly troubling are the instances of repeated unexplained deaths in young children in one family: the lack of readily identifiable cause of death in the victims of SIDS sometimes raises the suspicion of multiple infanticide, triggering criminal proceedings and long prison sentences, most commonly involving the mother. The history of overturned convictions in the cases of the so-called “killer mums” remains troubling and raises concerns about many parents around the globe facing judicial persecution and incarcerations, on top of the personal and familial tragedies they had endured. Recent advances in genomic technologies allowed affordable access to genetic testing in various fields
of medicine, leading to the identification of new genes and new pathogenic variants in known genes associated with various genetic conditions which are often rare and ultra-rare. Research in cardiac genetics provides clues about potential genetic causes of unexplained death in young children, and more importantly causes of recurrent death in one family: pathogenic variants in
ion channels can lead to electrical instability of the heart as an underlying mechanism of fatal arrhythmias, where the fatal episode may be the first and only manifestation of the condition. This review summarises what is known about the more common genetic arrhythmias in the context of the recent judicial proceedings in the case of Ms. Kathleen Folbigg in Australia, concluding that thorough genetic investigation is absolutely warranted in criminal proceedings involving multiple unexplained deaths and complex undiagnosed conditions in one family.
References
1. National Institutes of Health (NIH). What is SIDS? Available from: https://safetosleep.nichd.nih.gov/about/sids-definition. Accessed Jan 2025.
2. Goldwater PN. The science (or nonscience) of research into sudden infant death syndrome (SIDS). Front Pediatr. 2022;10:865051. doi: 10.3389/fped.2022.865051.
3. National Health Service (NHS). Sudden infant death syndrome (SIDS). Available from: https://www.nhs.uk/conditions/sudden-infant-death-syndrome-sids/. Accessed Jan 2025.
4. National Organization for Rare Disorders (NORD). Sudden unexplained death in childhood. Available from: https://rarediseases.org/rare-diseases/sudden-unexplained-death-in-childhood/. Accessed Jan 2025.
5. Parks SE, Erck Lambert AB, Hauck FR, Cottengim CR, Faulkner M, Shapiro-Mendoza CK. Explaining sudden unexpected infant deaths, 2011-2017. Pediatrics. 2021;147(5):e2020020076. doi: 10.1542/peds.2020-020076.
6. Keywan C, Poduri AH, Goldstein RD, Holm IA. Genetic factors underlying sudden infant death syndrome. Appl Clin Genet. 2021;14:61-76. doi: 10.2147/TACG.S269305.
7. Ackerman MJ, Siu BL, Sturner WQ, et al. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA. 2001;286(18):2264-9. doi: 10.1001/jama.286.18.2264.
8. Schwartz PJ, Crotti L, Nyegaard M, Overgaard MT. Calmodulin, sudden death, and the Folbigg case: genes in court. Eur Heart J. 2024;45(20):1801-3. doi: 10.1093/eurheartj/ehae144.
9. Neubauer J, Lecca MR, Russo G, et al. Post-mortem whole-exome analysis in a large sudden infant death syndrome cohort with a focus on cardiovascular and metabolic genetic diseases. Eur J Hum Genet. 2017;25(4):404-9. doi: 10.1038/ejhg.2016.185.
10. Buerki SE, Haas C, Neubauer J. Exome analysis focusing on epilepsy-related genes in children and adults with sudden unexplained death. Seizure. 2023;113:66-75. doi: 10.1016/j.seizure.2023.04.021.
11. Cazzato F, Coll M, Grassi S, et al. Investigating cardiac genetic background in sudden infant death syndrome (SIDS). Int J Legal Med. 2024;138(6):2229-37. doi: 10.1007/s00414-023-03058-4.
12. Koh HY, Haghighi A, Keywan C, et al. Genetic determinants of sudden unexpected death in pediatrics. Genet Med. 2022;24(4):839-50. doi: 10.1016/j.gim.2022.01.001.
13. Brownstein CA, Douard E, Haynes RL, et al. Copy number variation and structural genomic findings in 116 cases of sudden unexplained death between 1 and 28 months of age. Adv Genet (Hoboken). 2023;4(1):2200012. doi: 10.1002/ggn2.2200012.
14. Watkins SJ. Conviction by mathematical error? Doctors and lawyers should get probability theory right. BMJ. 2000;320(7226):2-3. doi: 10.1136/bmj.320.7226.2.
15. Byard RW. Unexpected infant death: lessons from the Sally Clark case. Med J Aust. 2004;181(1):52-4. doi: 10.5694/j.1326-5377.2004.tb06136.x.
16. Dyer C. Professor Roy Meadow struck off. BMJ. 2005;331(7510):177. doi: 10.1136/bmj.331.7510.177.
17. Glinge C, Rossetti S, Oestergaard LB, et al. Risk of sudden infant death syndrome among siblings of children who died of sudden infant death syndrome in Denmark. JAMA Netw Open. 2023;6(1):e2252724. doi: 10.1001/jamanetworkopen.2022.52724.
18. Garstang JJ, Campbell MJ, Cohen MC, et al. Recurrent sudden unexpected death in infancy: a case series of sibling deaths. Arch Dis Child. 2020;105(10):945-50. doi: 10.1136/archdischild-2019-318155.
19. Miller DT, Lee K, Abul-Husn NS,et al. ACMG SF v3.2 list for reporting of secondary findings in clinical exome and genome sequencing: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2023;25(8):100866. doi: 10.1016/j.gim.2023.05.008.
20. Groffen AJ, Bikker H, Christiaans I. Long QT syndrome overview. 2003 Feb 20 [updated 2024 Mar 21]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1129/
21. Schwartz PJ, Crotti L. QTc behavior during exercise and genetic testing for the long-QT syndrome. Circulation. 2011;124(20):2181-4. doi: 10.1161/CIRCULATIONAHA.111.061531.
22. Zhu W, Bian X, Lv J. From genes to clinical management: a comprehensive review of long QT syndrome pathogenesis and treatment. Heart Rhythm O2. 2024;5(8):573-86. doi: 10.1016/j.hroo.2024.02.007.
23. Ingles J, Semsarian C. Time to rethink the genetic architecture of long QT syndrome. Circulation. 2020;141(6):440-3. doi: 10.1161/CIRCULATIONAHA.119.044415.
24. Kutyifa V, Daimee UA, McNitt S, et al. Clinical aspects of the three major genetic forms of long QT syndrome (LQT1, LQT2, LQT3). Ann Noninvasive Electrocardiol. 2018;23(3):e12537. doi: 10.1111/anec.12537.
25. Galic E, Beslic P, Kilic P,et al. Congenital long QT syndrome: a systematic review. Acta Clin Croat. 2021;60(4):739-48. doi: 10.20471/acc.2021.60.04.14.
26. Zeppenfeld K, Tfelt-Hansen J, de Riva M, et al. 2022 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Eur Heart J. 2022;43(40):3997-4126. doi: 10.1093/eurheartj/ehac262.
27. Napolitano C, Mazzanti A, Bloise R, Priori GS. Catecholaminergic polymorphic ventricular tachycardia. 2004 Oct 14 [updated 2022 Jun 23]. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2024. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1289/
28. Priori SG, Mazzanti A, Santiago DJ, Kukavica D, Trancuccio A, Kovacic JC. Precision medicine in catecholaminergic polymorphic ventricular tachycardia: JACC Focus Seminar 5/5. J Am Coll Cardiol. 2021;77(20):2592-612. doi: 10.1016/j.jacc.2021.03.321.
29. Abbas M, Miles C, Behr E. Catecholaminergic polymorphic ventricular tachycardia. Arrhythm Electrophysiol Rev. 2022;11:e20. doi: 10.15420/aer.2022.08.
30. Roston TM, Yuchi Z, Kannankeril PJ, et al. The clinical and genetic spectrum of catecholaminergic polymorphic ventricular tachycardia: findings from an international multicentre registry. Europace. 2018;20(3):541-7. doi: 10.1093/europace/eux332.
31. van der Werf C, Nederend I, Hofman N, et al. Familial evaluation in catecholaminergic polymorphic ventricular tachycardia: disease penetrance and expression in cardiac ryanodine receptor mutation-carrying relatives. Circ Arrhythm Electrophysiol. 2012;5(4):748-56. doi: 10.1161/CIRCEP.112.972620.
32. Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2018;72(14):e91-e220. doi: 10.1016/j.jacc.2018.10.061.
33. Verheul LM, van der Ree MH, Groeneveld SA,et al. The genetic basis of apparently idiopathic ventricular fibrillation: a retrospective overview. Europace. 2023;25(11). doi: 10.1093/europace/euad250.
34. Priori SG, Blomstrom-Lundqvist C. 2015 European Society of Cardiology guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death summarized by co-chairs. Eur Heart J. 2015;36(41):2757-9. doi: 10.1093/eurheartj/ehv445.
35. Haissaguerre M, Duchateau J, Dubois R,et al. Idiopathic ventricular fibrillation: role of Purkinje system and microstructural myocardial abnormalities. JACC Clin Electrophysiol. 2020;6(6):591-608. doi: 10.1016/j.jacep.2020.03.004.
36. Beazley J. Wrongfully jailed for 20 years, Australia’s ‘most hated woman’ likely to receive record compensation. The Guardian [Internet]. 2023 Dec 14 [cited 2025 Jan]. Available from: https://www.theguardian.com/australia-news/2023/dec/14/wrongfully-jailed-for-20-years-australias-most-hated-woman-likely-to-receive-record-compensation
37. Wikipedia contributors. Kathleen Folbigg. Wikipedia [Internet]. 2024 [cited 2025 Jan]. Available from: https://en.wikipedia.org/wiki/Kathleen_Folbigg
38. Brohus M, Arsov T, Wallace DA,et al. Infanticide vs. inherited cardiac arrhythmias. Europace. 2021;23(3):441-50. doi: 10.1093/europace/euaa392.
39. Rego R. A critical analysis of post-conviction review in New South Wales, Australia. The Wrongful Conviction Law Rev. 2021;2(3):305-47. doi: 10.29173/wclawr66.
40. Phillips N. She was convicted of killing her four children. Could a gene mutation set her free? Nature (News Feature). 2022 Nov 9. doi: 10.1038/d41586-022-03474-2.
41. Ritchie H. Kathleen Folbigg: Misogyny helped jail her, science freed her. BBC News [Internet]. 2023 Jun 8 [cited 2025 Jan]. Available from: https://www.bbc.com/news/world-australia-65830799
42. Nyegaard M, Overgaard MT, Sondergaard MT,et al. Mutations in calmodulin cause ventricular tachycardia and sudden cardiac death. Am J Hum Genet. 2012;91(4):703-12. doi: 10.1016/j.ajhg.2012.08.015.
43. Crotti L, Spazzolini C, Tester DJ,et al. Calmodulin mutations and life-threatening cardiac arrhythmias: insights from the International Calmodulinopathy Registry. Eur Heart J. 2019;40(35):2964-75. doi: 10.1093/eurheartj/ehz311.
44. Crotti L, Spazzolini C, Nyegaard M, et al. Clinical presentation of calmodulin mutations: the International Calmodulinopathy Registry. Eur Heart J. 2023;44(35):3357-70. doi: 10.1093/eurheartj/ehad351.
45. Timms P, Roberts M, Wakatama G. Kathleen Folbigg has convictions for killing her four children overturned. ABC News [Internet]. 2023 Dec 14 [cited 2025 Jan]. Available from: https://www.abc.net.au/news/2023-12-14/kathleen-folbigg-court-of-criminal-appeal-charges/103224344
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Todor Arsov, Carola G. Vinuesa

This work is licensed under a Creative Commons Attribution 4.0 International License.
By publishing in Paediatria Croatica, authors retain the copyright to their work and grant others the right to use, reproduce, and share their research articles in accordance with the Creative Commons Attribution License (CC BY 4.0), which allows others to distribute and build upon the work as long as they credit the author for the original creation.