Perinatal Developmental vs. Postnatally Acquired Pediatric Communication, Language, and Speech Disorders: Similarities and Differences

Authors

  • Blaženka Brozović Odsjek za logopediju, Edukacijsko-rehabilitacijski fakultet, Sveučilište u Zagrebu

DOI:

https://doi.org/10.13112/pc.994

Keywords:

developmental language disorders, acquired language disorders, communication, perinatal, children

Abstract

Developmental and acquired pediatric communication, language, and speech disorders can significantly impact a child’s development. Perinatal and postnatally acquired disorders differ in terms of the timing of injury, etiology, localization of damage, the degree of structural and functional brain development, and the level of communication and speech and language skills. In perinatal disorders, language acquisition occurs within altered neural architecture, while acquired disorders involve damage to already established neural structures and functional networks. In early childhood, both hemispheres are involved in language processing, and functional language networks are organized differently than in older children and adults. The more mature the structural and functional neural organization at the time of injury, the more the resulting deficits will resemble those seen in adults and will be more selective. These distinctions lead to differences in clinical manifestation, and understanding them has critical implications for diagnosis, therapy, and prognosis.

References

1. Olulade OA, Seydell-Greenwald A, Chambers CE, et al. The neural basis of language development: Changes in lateralization over age. Proceedings of the National Academy of Sciences. 2020 Sep 22;117(38):23477-83. Doi: 10.1073/pnas.1905590117

2. Ludlow CL. Children's language disorders: Recent research advances. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1980 Jun;7(6):497-507. Doi: 10.1002/ana.410070602

3. Norbury CF, Gooch D, Wray C, et al. The impact of nonverbal ability on prevalence and clinical presentation of language disorder: evidence from a population study. J Child Psychol Psychiatry. 2016 Nov;57(11):1247-1257. Doi: 10.1111/jcpp.12573.

4. Bishop DV, Nation K, Patterson K. When words fail us: insights into language processing from developmental and acquired disorders. Philos Trans R Soc Lond B Biol Sci. 2013 Dec 9;369(1634):20120403. Doi: 10.1098/rstb.2012.0403.

5. Reidy N, Morgan A, Thompson DK, Inder TE, Doyle LW, Anderson PJ. Impaired language abilities and white matter abnormalities in children born very preterm and/or very low birth weight. The Journal of Pediatrics. 2013 Apr 1;162(4):719-24. Doi: 10.1016/j.jpeds.2012.10.017

6. Müller JB, Hanf M, Flamant C, Olivier M, Rouger V, Gascoin G, Basset H, Rozé JC, Nusinovici S. Relative contributions of prenatal complications, perinatal characteristics, neonatal morbidities and socio-economic conditions of preterm infants on the occurrence of developmental disorders up to 7 years of age. International journal of epidemiology. 2019 Feb 1;48(1):71-82. Doi: 10.1093/ije/dyy240

7. Menyuk P, Brisk ME, Menyuk P, Brisk ME. Language development in adolescence—The high school years (ages 13–18). Language development and education: Children with varying language experiences. 2005:157-78. DOIhttps://doi.org/10.1057/9780230504325_9

8. Berman, R. A. Developing Linguistic Knowledge and Language Use Across Adolescence. In: Hoff E, Shatz M, editors. Blackwell handbook of language development. John Wiley & Sons; 2009 May 1: 347-367. ch17. doi:10.1002/9780470757833

9. Brozovic, B. Komunikacija, jezik i govor u djece s Fragilnim X sindromom. Neobjavljeni material. Fragilni X sindrom. Edukacija održana u Klinici za dječje bolesti Zagreb, studeni 1998.

10. Bloom L, Lahey M. Language development and language disorders. John Wiley & Sons; 1978.

11. Mills DL, Coffey-Corina SA, Neville HJ. Language acquisition and cerebral specialization in 20-month-old infants. J Cogn Neurosci. 1993 Summer;5(3):317-34. Doi: 10.1162/jocn.1993.5.3.317.

12. Perani D, Saccuman MC, Scifo P, Anwander A, et al. Neural language networks at birth. Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):16056-61. doi: 10.1073/pnas.1102991108.

13. Aarnoudse-Moens CS, Weisglas-Kuperus N, van Goudoever JB, Oosterlaan J. Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics. 2009 Aug;124(2):717-28. doi: 10.1542/peds.2008-2816.

14. Burnett AC, Scratch SE, Lee KJ, et al. Executive function in adolescents born< 1000 g or< 28 weeks: a prospective cohort study. Pediatrics. 2015 Apr 1;135(4):e826-34. Doi: 10.1542/peds.2014-3188

15. Costa DS, Miranda DM, Burnett AC, et al. Victorian Infant Collaborative Study Group. Executive function and academic outcomes in children who were extremely preterm. Pediatrics. 2017 Sep 1;140(3). doi:10.1542/peds.2017-0257

16. Srzentic MK, Raguz M, Ozretic D. Specific cognitive deficits in preschool age correlated with qualitative and quantitative MRI parameters in prematurely born children. Pediatrics & Neonatology. 2020 Apr 1;61(2):160-7. Doi: 10.1016/j.pedneo.2019.09.003

17. Mürner-Lavanchy I, Ritter BC, Spencer-Smith MM, et al. Visuospatial working memory in very preterm and term born children—Impact of age and performance. Developmental cognitive neuroscience. 2014 Jul 1;9:106-16. Doi: 10.1016/j.dcn.2014.02.004

18. Kolevzon A, Gross R, Reichenberg A. Prenatal and perinatal risk factors for autism: a review and integration of findings. Arch Pediatr Adolesc Med. 2007 Apr;161(4):326-33. Doi: 10.1001/archpedi.161.4.326

19. van Noort-van der Spek IL, Franken MC, Weisglas-Kuperus N. Language functions in preterm-born children: a systematic review and meta-analysis. Pediatrics. 2012 Apr 1;129(4):745-54. Doi: 10.1542/peds.2011-1728

20. Volpe JJ. Neurology of the Newborn. 5th ed. Philadelphia, PA: Elsevier; 2008.

21. Mukerji A, Shah V, Shah PS. Periventricular/intraventricular hemorrhage and neurodevelopmental outcomes: a meta-analysis. Pediatrics. 2015;136(6). Doi:10.1542/peds.2015-0944

22. Rees P, Gale C, Battersby C, Williams C, Carter B, Sutcliffe A. Intraventricular Hemorrhage and Survival, Multimorbidity, and Neurodevelopment. JAMA Network Open. 2025 Jan 2;8(1):e2452883. Doi:10.1001/jamanetworkopen.2024.52883

23. Ljubesic M, Cepanec M, Ivsac Pavlisa J, Simlesa S. Predjezična i rana jezična komunikacija: obilježja prijelaznog stadija u djece s perinatalnim oštećenjem mozga. Hrvatska revija za rehabilitacijska istraživanja. 2009;45(1):15-29. Available from: https://hrcak.srce.hr/45632

24. Brozovic, B. Rani komunikacijski i jezični razvoj djece s prenatalnim i perinatalnim moždanim lezijama: Rani komunikacijski i jezični razvoj djece s prenatalnim i perinatalnim moždanim lezijama [Elektronic source] : doktorski rad. Zagreb. B. Brozovic, 2012. Available from: http://skupni.nsk.hr/Record/nsk.NSK01000831850

25. Brozovic, B.,Ivsac, J., Blazi, D., Ljubesic, M. Komunikacija, jezik i spoznaja u djece s perinatalnim mozgovnim lezijama. Neurologia Croatica. 2003;52(4):77-77.

26. Simlesa, S, Ivsac Pavlisa, J, Cepanec, M., Mejaski-Bosnjak, M., Ljubesic, M. Što znamo o ranim sociokognitivnim obilježjima djece s pre/perinatalnim oštećenjem mozga. Paediatria Croatica. 2010;54:65-73. Available from: https://www.paedcro.com/opsirnije.php?clanak=549

27. Vohr BR. Neurodevelopmental outcomes of premature infants with intraventricular hemorrhage across a lifespan. InSeminars in Perinatology 2022 Aug 1 (Vol. 46, No. 5, p. 151594). WB Saunders. Doi:10.1016/j.semperi.2022.151594

28. Martinez-Biarge M, Bregant T, Wusthoff CJ, Chew AT, Diez-Sebastian J, Rutherford MA, Cowan FM. White matter and cortical injury in hypoxic-ischemic encephalopathy: antecedent factors and 2-year outcome. The Journal of Pediatrics. 2012 Nov 1;161(5):799-807. doi: 10.1016/j.jpeds.2012.04.054

29. Vohr BR, Allan W, Katz KH, Schneider K, Tucker R, Ment LR. Adolescents born prematurely with isolated grade 2 haemorrhage in the early 1990s face increased risks of learning challenges. Acta Paediatrica. 2014 Oct;103(10):1066-71. Doi: 10.1111/apa.12728.

30. Patra K, Wilson-Costello D, Taylor HG, Mercuri-Minich N, Hack M. Grades I-II intraventricular hemorrhage in extremely low birth weight infants: effects on neurodevelopment. The Journal of Pediatrics. 2006 Aug 1;149(2):169-73. Doi: 10.1016/j.jpeds.2006.04.002

31. Périsset A, Natalucci G, Adams M, Karen T, Bassler D, Hagmann C. Impact of low-grade intraventricular hemorrhage on neurodevelopmental outcome in very preterm infants at two years of age. Early Human Development. 2023 Mar 1;177:105721. Doi: 10.1016/j.earlhumdev.2023.105721

32. Whitelaw A. Core concepts: intraventricular hemorrhage. NeoReviews. 2011 Feb 1;12(2):e94-101. Doi:10.1542/neo.12-2-e94

33. Thompson DK, Lee KJ, Egan GF, Warfield SK, Doyle LW, Anderson PJ, Inder TE. Regional white matter microstructure in very preterm infants: predictors and 7 year outcomes. Cortex. 2014 Mar 1;52:60-74. Doi: 10.1038/s41390-019-0461-1

34. Rogers CE, Smyser T, Smyser CD, Shimony J, Inder TE, Neil JJ. Regional white matter development in very preterm infants: perinatal predictors and early developmental outcomes. Pediatric research. 2016 Jan;79(1):87-95. Doi: 10.1038/pr.2015.172

35. Dubner SE, Rose J, Bruckert L, Feldman HM, Travis KE. Neonatal white matter tract microstructure and 2-year language outcomes after preterm birth. NeuroImage: Clinical. 2020 Jan 1;28:102446. Doi:10.1016/j.nicl.2020.102446

36. Cepanec M, Ljubesic M. Early lexical and morphosyntactic development in children with perinatal brain injury acquiring Croatian. Journal of Multilingual Communication Disorders. 2006 Jan 1;4(2):128-48. Doi: 10.1080/14769670601092630

37. Vicari S, Albertoni A, Chilosi AM, Cipriani P, Cioni G, Bates E. Plasticity and reorganization during language development in children with early brain injury. Cortex. 2000 Jan 1;36(1):31-46. doi:10.1016/S0010-9452(08)70834-7

38. Northam GB, Morgan AT, Fitzsimmons S, Baldeweg T, Liégeois FJ. Corticobulbar Tract Injury, Oromotor Impairment and Language Plasticity in Adolescents Born Preterm. Front Hum Neurosci. 2019 Feb 19;13:45. Doi: 10.3389/fnhum.2019.00045

39. Liegeois F, Tournier JD, Pigdon L, Connelly A, Morgan AT. Corticobulbar tract changes as predictors of dysarthria in childhood brain injury. Neurology. 2013 Mar 5;80(10):926-32. Doi: 10.1212/WNL.0b013e3182840c6d

40. Staudt M, Grodd W, Niemann G, Wildgruber D, Erb M, Krägeloh–Mann I. Early left periventricular brain lesions induce right hemispheric organization of speech. Neurology. 2001 Jul 10;57(1):122-5. Doi: 10.1212/wnl.57.1.122

41. Staudt M, Ticini LF, Grodd W, Krägeloh-Mann I, Karnath HO. Functional topography of early periventricular brain lesions in relation to cytoarchitectonic probabilistic maps. Brain and language. 2008 Sep 1;106(3):177-83. Doi:10.1016/j.bandl.2008.01.007

42. Staudt M, Lidzba K, Grodd W, Wildgruber D, Erb M, Krägeloh-Mann I. Right-hemispheric organization of language following early left-sided brain lesions: functional MRI topography. Neuroimage. 2002 Aug 1;16(4):954-67. Doi: 10.1006/nimg.2002.1108

43. Ricci D, Mercuri E, Barnett A, et al. Cognitive outcome at early school age in term-born children with perinatally acquired middle cerebral artery territory infarction. Stroke. 2008 Feb 1;39(2):403-10. Doi:10.1161/STROKEAHA.107.489831

44. Sreenan C, Bhargava R, Robertson CM. Cerebral infarction in the term newborn: clinical presentation and long-term outcome. J Pediatr. 2000 Sep;137(3):351-5. Doi: 10.1067/mpd.2000.107845

45. Chilosi AM, Cipriani PP, Bertuccelli B, Pfanner PL, Cioni PG. Early cognitive and communication development in children with focal brain lesions. J Child Neurol. 2001 May;16(5):309-16. Doi: 10.1177/088307380101600502

46. Stiles J, Reilly J, Paul B, Moses P. Cognitive development following early brain injury: evidence for neural adaptation. Trends Cogn Sci. 2005 Mar;9(3):136-43. Doi: 10.1016/j.tics.2005.01.002

47. Newport EL, Seydell-Greenwald A, Landau B, et al. Language and developmental plasticity after perinatal stroke. Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2207293119. Doi: 10.1073/pnas.2207293119.

48. Heimgärtner M, Gschaidmeier A, Schnaufer L, Staudt M, Wilke M, Lidzba K. The long-term negative impact of childhood stroke on language. Frontiers in Pediatrics. 2024 May 7;12:1338855. Doi:10.3389/fped.2024.1338855

49. Micheletti S, Galli J, Vezzoli M, et al. Academic skills in children with cerebral palsy and specific learning disorders. Developmental Medicine & Child Neurology. 2024 Jun;66(6):778-92. Doi: 10.1111/dmcn.15808

50. Gillies MB, Bowen JR, Patterson JA, Roberts CL, Torvaldsen S. Educational outcomes for children with cerebral palsy: a linked data cohort study. Developmental Medicine & Child Neurology. 2018 Apr;60(4):397-401. Doi: 10.1111/dmcn.13651

51. de Freitas Feldberg SC, da Silva Gusmão Cardoso T, Santos FH, Muszkat M, Bueno OFA, Berlim de Mello C. Numerical cognition in children with cerebral palsy. Res Dev Disabil. 2021 Dec;119:104086. Doi: 10.1016/j.ridd.2021.104086.

52. Critten V, Campbell E, Farran E, Messer D. Visual perception, visual-spatial cognition and mathematics: Associations and predictions in children with cerebral palsy. Res Dev Disabil. 2018 Sep;80:180-191. Doi: 10.1016/j.ridd.2018.06.007.

53. Van Rooijen M, Verhoeven L, Steenbergen B. Early numeracy in cerebral palsy: review and future research. Dev Med Child Neurol. 2011 Mar;53(3):202-9. Doi: 10.1111/j.1469-8749.2010.03834

54. Christensen D, Van Naarden Braun K, Doernberg NS, et al. Prevalence of cerebral palsy, co‐occurring autism spectrum disorders, and motor functioning - Autism and Developmental Disabilities Monitoring Network, USA, 2008. Developmental Medicine & Child Neurology. 2014 Jan;56(1):59-65. Doi:10.1111/dmcn.12268

55. Pan PY, Bölte S, Kaur P, Jamil S, Jonsson U. Neurological disorders in autism: A systematic review and meta-analysis. Autism. 2021 Apr;25(3):812-830. Doi: 10.1177/1362361320951370.

56. Judas M, Rados M, Jovanov-Milosevic N, Hrabac P, Stern-Padovan R, Kostovic I. Structural, immunocytochemical, and mr imaging properties of periventricular crossroads of growing cortical pathways in preterm infants. AJNR Am J Neuroradiol. 2005 Nov-Dec;26(10):2671-84. MID: 16286422; PMCID: PMC7976217.

57. Hécaen H. Acquired aphasia in children: Revisited. Neuropsychologia. 1983 Jan 1;21(6):581-7. Doi:10.1016/0028-3932(83)90055-6

58. SATZ, P. and BULLARD-BATES, C. Acquired aphasia in children. In Acquired Aphasia, M. T. SARNO (Editor), pp. 399426. Academic Press, New York, 1981.

59. VanDongen HR, Loonen MC, VanDongen KJ. Anatomical basis for acquired fluent aphasia in children. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 1985 Mar;17(3):306-9. Doi: 10.1002/ana.410170316

60. Turkstra LS, Politis AM, Forsyth R. Cognitive–communication disorders in children with traumatic brain injury. Developmental Medicine & Child Neurology. 2015 Mar;57(3):217-22. Doi: 10.1111/dmcn.12600

61. Docking KM, Knijnik SR. Prospective longitudinal decline in cognitive-communication skills following treatment for childhood brain tumor. Brain Injury. 2021 Sep 19;35(11):1472-9. Doi:10.1080/02699052.2021.1970806

Published

2025-03-11

Issue

Section

Review

How to Cite

Brozović, B. (2025). Perinatal Developmental vs. Postnatally Acquired Pediatric Communication, Language, and Speech Disorders: Similarities and Differences. Paediatria Croatica, 69(1), 9-19. https://doi.org/10.13112/pc.994

Similar Articles

1-10 of 501

You may also start an advanced similarity search for this article.