Childhood myocarditis and pericarditis
DOI:
https://doi.org/10.13112/pc.1087Keywords:
MYOCARDITIS; CHILD; PERICARDITIS; ECHOCARDIOGRAPHY; MAGNETIC RESONANCE IMAGINGAbstract
Myocarditis is an inflammatory disease of the middle, muscular part of the heart in which inflammation of heart cells leads to temporary or permanent damage with consequent loss of function, which is clinically manifested by heart failure and/or arrhythmia. It is considered a rare disease, although the incidence is unknown because most cases with milder clinical symptoms are not recognized. The clinical presentation is very diverse, from very mild, asymptomatic cases to heart failure and cardiogenic shock. Diagnosis is based on the history and clinical findings, elevated inflammatory and cardiac biomarkers in serum, and imaging tests, where ultrasound and magnetic resonance imaging of the heart play key roles. The therapeutic approach depends on the hemodynamic abnormalities in the patient. Pericarditis is an inflammation of the visceral and parietal pericardium and is not a common disease in children. Although data on the incidence of the disease in the general population are scarce, it is believed that it is 30-150/100,000 per year. It causes chest pain in <0.2 to 5 % of children who present to the emergency department without prior heart disease. Pericarditis can present clinically as acute, recurrent, or chronic. It is treated with nonsteroidal anti-inflammatory drugs, recurrent with corticosteroids and colchicine, and increasingly, in resistant forms, biological immunomodulatory therapy is also used.
References
1. Law YM, Lal AK, Chen S, et al. Diagnosis and management of myocarditis in children: a scientific statement from the American Heart Association. Circulation. 2021;144(6):e123–35. doi: 10.1161/CIR.0000000000001001.
2. Vasudeva R, Bhatt P, Lilje C, et al. Trends in acute myocarditis-related pediatric hospitalizations in the United States, 2007–2016. Am J Cardiol. 2021;149:95–102. doi: 10.1016/j.amjcard.2021.03.017.
3. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006. Circulation. 2009;119(8):1085–92. doi: 10.1161/CIRCULATIONAHA.108.802318.
4. Fabre A, Sheppard MN. Sudden adult death syndrome and other non-ischaemic causes of sudden cardiac death. Heart. 2006;92(3):316–20. doi: 10.1136/hrt.2005.067488.
5. Doolan A, Langlois N, Semsarian C. Causes of sudden cardiac death in young Australians. Med J Aust. 2004;180(3):110–2. doi: 10.5694/j.1326-5377.2004.tb05875.x.
6. Puranik R, Chow CK, Duflou JA, Kilborn MJ, McGuire MA. Sudden death in the young. Heart Rhythm. 2005;2(12):1277–82. doi: 10.1016/j.hrthm.2005.08.021.
7. Harris KM, Mackey-Bojack S, Bennett M, Nwaudo D, Duncanson E, Maron BJ. Sudden unexpected death due to myocarditis in young people including athletes. Am J Cardiol. 2021;143:131–4. doi: 10.1016/j.amjcard.2020.10.048.
8. Valverde I, Singh Y, Sanchez-de-Toledo J, et al. Acute cardiovascular manifestations in 286 children with multisystem inflammatory syndrome associated with COVID-19 infection in Europe. Circulation. 2021;143(1):21–32. doi: 10.1161/CIRCULATIONAHA.120.050065.
9. Martinez MW, Tucker AM, Bloom OJ, et al. Prevalence of inflammatory heart disease among professional athletes with prior COVID-19 infection who received systematic return-to-play cardiac screening. JAMA Cardiol. 2021;6(7):745–52. doi: 10.1001/jamacardio.2021.0565.
10. Farooqi KM, Chan A, Weller RJ, et al. Longitudinal outcomes for multisystem inflammatory syndrome in children. Pediatrics. 2021;148(4):e2021051155. doi: 10.1542/peds.2021-051155.
11. Wu L, Ong S, Talor MV, et al. Cardiac fibroblasts mediate IL-17A-driven inflammatory dilated cardiomyopathy. J Exp Med. 2014;211(7):1449–64. doi: 10.1084/jem.20132144.
12. Belhadjer Z, Méot M, Bajolle F, et al. Acute heart failure in multisystem inflammatory syndrome in children in the context of global SARS-CoV-2 pandemic. Circulation. 2020;142(5):429–36. doi: 10.1161/CIRCULATIONAHA.120.048360.
13. Feldstein LR, Rose EB, Horwitz SM, et al. Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med. 2020;383(4):334–46. doi: 10.1056/NEJMoa2021680.
14. Canter CE, Simpson KE, Simpson KP. Diagnosis and treatment of myocarditis in children in the current era. Circulation. 2014;129(1):115–28. doi: 10.1161/CIRCULATIONAHA.113.001372.
15. Messroghli DR, Pickardt T, Fischer M, Opgen-Rhein B, Papakostas K, Böcker D, Jakob A, Khalil M, Mueller GC, Schmidt F, et al; MYKKE Consortium. Toward evidence-based diagnosis of myocarditis in children and adolescents: rationale, design, and first baseline data of MYKKE, a multicenter registry and study platform. Am Heart J. 2017;187:133–44. doi: 10.1016/j.ahj.2017.02.002.
16. Kociol RD, Cooper LT, Fang JC, Moslehi JJ, Pang PS, Sabe MA, Shah RV, Sims DB, Thiene G, Vardeny O; on behalf of the American Heart Association Heart Failure and Transplantation Committee of the Council on Clinical Cardiology. Recognition and initial management of fulminant myocarditis: a scientific statement from the American Heart Association. Circulation. 2020;141(6):e69–e92. doi: 10.1161/CIR.0000000000000745.
17. Lieberman EB, Hutchins GM, Herskowitz A, Rose NR, Baughman KL. Clinicopathologic description of myocarditis. J Am Coll Cardiol. 1991;18(7):1617–26. doi: 10.1016/0735-1097(91)90661-X.
18. Floyd A, Lal A, Molina K, Puchalski M, Miller D, May L. When lightning strikes twice in pediatrics: case report and review of recurrent myocarditis. Pediatrics. 2018;141(1):e20164096. doi: 10.1542/peds.2016-4096.
19. Suthar D, Dodd DA, Godown J. Identifying non-invasive tools to distinguish acute myocarditis from dilated cardiomyopathy in children. Pediatr Cardiol. 2018;39(6):1134–8. doi: 10.1007/s00246-018-1865-4.
20. Lauer B, Niederau C, Kühl U, et al. Cardiac troponin T in patients with clinically suspected myocarditis. J Am Coll Cardiol. 1997;30:1354–1359. doi: 10.1016/S0735-1097(97)00317-3.
21. Miyake CY, Teele SA, Chen L, et al. In-hospital arrhythmia development and outcomes in pediatric patients with acute myocarditis. Am J Cardiol. 2014;113:535–540. doi: 10.1016/j.amjcard.2013.10.040.
22. Butts RJ, Boyle GJ, Deshpande SR, et al. Characteristics of clinically diagnosed pediatric myocarditis in a contemporary multicenter cohort. Pediatr Cardiol. 2017;38:1175–1182. doi: 10.1007/s00246-017-1630-7.
23. Jhamnani S, Fuisz A, Lindsay J. The spectrum of electrocardiographic manifestations of acute myocarditis: an expanded understanding. J Electrocardiol. 2014;47:941–947. doi: 10.1016/j.jelectrocard.2014.07.020.
24. Ichikawa R, Sumitomo N, Komori A, et al. The follow-up evaluation of electrocardiogram and arrhythmias in children with fulminant myocarditis. Circ J. 2011;75:932–938.
25. Skouri HN, Dec GW, Friedrich MG, Cooper LT. Noninvasive imaging in myocarditis. J Am Coll Cardiol. 2006;48:2085–2093. doi: 10.1016/j.jacc.2006.08.011.
26. Gursu HA, Cetin II, Azak E, et al. The assessment of treatment outcomes in patients with acute viral myocarditis by speckle tracking and tissue Doppler methods. Echocardiography. 2019;36:1666–1674.
27. Wisotzkey BL, Soriano BD, Albers EL, Ferguson M, Buddhe S. Diagnostic role of strain imaging in atypical myocarditis by echocardiography and cardiac MRI. Pediatr Radiol. 2018;48:835–842. doi: 10.1007/s00247-018-4090-0.
28. Khoo NS, Smallhorn JF, Atallah J, Kaneko S, Mackie AS, Paterson I. Altered left ventricular tissue velocities, deformation and twist in children and young adults with acute myocarditis and normal ejection fraction. J Am Soc Echocardiogr. 2012;25:294–303. doi: 10.1016/j.echo.2011.11.014.
29. Messroghli DR, Moon JC, Ferreira VM, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR). J Cardiovasc Magn Reson. 2017;19:75. doi: 10.1186/s12968-017-0389-8.
30. Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol. 2018;72:3158–3176. doi: 10.1016/j.jacc.2018.09.072.
31. Luetkens JA, Faron A, Isaak A, et al. Comparison of original and 2018 Lake Louise Criteria for diagnosis of acute myocarditis: results of a validation cohort. Radiol Cardiothorac Imaging. 2019;1(3):e190010. doi: 10.1148/ryct.2019190010.
32. Aretz HT, Billingham ME, Edwards WD, et al. Myocarditis: a histopathologic definition and classification. Am J Cardiovasc Pathol. 1987;1:3–14.
33. Katzmann JL, Schlattmann P, Rigopoulos AG, Noutsias E, Bigalke B, Pauschinger M, Tschope C, Sedding D, Schulze PC, Noutsias M. Meta-analysis on the immunohistological detection of inflammatory cardiomyopathy in endomyocardial biopsies. Heart Fail Rev. 2020;25:277–294. doi: 10.1007/s10741-019-09824-2.
34. Shanes JG, Ghali J, Billingham ME, et al. Interobserver variability in the pathologic interpretation of endomyocardial biopsy results. Circulation. 1987;75(2):401–405. doi: 10.1161/01.CIR.75.2.401.
35. Mahrholdt H, Wagner A, Deluigi CC, et al. Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation. 2006;114:1581–1590. doi: 10.1161/CIRCULATIONAHA.105.606509.
36. Cooper LT. Myocarditis. N Engl J Med. 2009;360(15):1526–1538. doi: 10.1056/NEJMra0800028.
37. Ogunbayo GO, Elayi SC, Ha LD, et al. Outcomes of heart block in myocarditis: a review of 31,760 patients. Heart Lung Circ. 2019;28:272–276. doi: 10.1016/j.hlc.2018.04.296.
38. Dimas VV, Morray BH, Kim DW, et al. A multicenter study of the Impella device for mechanical support of the systemic circulation in pediatric and adolescent patients. Catheter Cardiovasc Interv. 2017;90:124–129. doi: 10.1002/ccd.26833.
39. Drucker NA, Colan SD, Lewis AB, et al. Gamma-globulin treatment of acute myocarditis in the pediatric population. Circulation. 1994;89:252–257. doi: 10.1161/01.CIR.89.1.252.
40. Chen HS, Wang W, Wu SN, Liu JP. Corticosteroids for viral myocarditis. Cochrane Database Syst Rev. 2013;2013(10):CD004471. doi: 10.1002/14651858.CD004471.pub3.
41. Schauer J, Newland D, Hong B, et al. Treating pediatric myocarditis with high-dose steroids and immunoglobulin. Pediatr Cardiol. 2022;44:1–10. doi: 10.1007/s00246-022-02961-8.
42. Putschoegl A, Auerbach S. Diagnosis, evaluation, and treatment of myocarditis in children. Pediatr Clin North Am. 2020;67(5):855–874. doi: 10.1016/j.pcl.2020.05.003.
43. Foerster SR, Canter CE, Cinar A, et al. Ventricular remodeling and survival are more favorable for myocarditis than for idiopathic dilated cardiomyopathy in childhood: an outcomes study from the Pediatric Cardiomyopathy Registry. Circ Heart Fail. 2010;3:689–697.
44. Patriki D, Baltensperger N, Berg J, et al. A prospective pilot study to identify a myocarditis cohort who may safely resume sports activities 3 months after diagnosis. J Cardiovasc Transl Res. Published online May 4, 2020. doi: 10.1007/s12265-020-10015-8.
45. Imazio M, Cecchi E, Demichelis B, et al. Myopericarditis versus viral or idiopathic acute pericarditis. Heart. 2008;94(4):498–501. doi: 10.1136/hrt.2007.118497.
46. Ratnapalan S, Brown K, Benson L. Children presenting with acute pericarditis to the emergency department. Pediatr Emerg Care. 2011;27(7):581–585. doi: 10.1097/PEC.0b013e31822255d8.
47. Shahid R, Jin J, Hope K, Tunuguntla H, Amdani S. Pediatric pericarditis: update. Curr Cardiol Rep. 2023;25(3):157–170. doi: 10.1007/s11886-023-01790-x.
48. Adler Y, Charron P, Imazio M, et al. ESC guidelines for the diagnosis and management of pericardial diseases: the task force for the diagnosis and management of pericardial diseases of the European Society of Cardiology (ESC), endorsed by the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2015;36(42):2921–2964. doi: 10.1093/eurheartj/ehv318.
49. Rodriguez-Gonzalez M, Ruiz-Gonzalez E, Castellano-Martinez A. Anakinra as rescue therapy for steroid-dependent idiopathic recurrent pericarditis in children: case report and literature review. Cardiol Young. 2019;29(2):241–243. doi: 10.1017/S1047951118002085.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sanja Dorner

This work is licensed under a Creative Commons Attribution 4.0 International License.
By publishing in Paediatria Croatica, authors retain the copyright to their work and grant others the right to use, reproduce, and share their research articles in accordance with the Creative Commons Attribution License (CC BY 4.0), which allows others to distribute and build upon the work as long as they credit the author for the original creation.