Genetic factors and cerebral palsy
DOI:
https://doi.org/10.13112/pc.1051Keywords:
GENETICS; CEREBRAL PALSY; EXOME; GENOME; SEQUENCE ANALYSISAbstract
Purpose: The historical descriptions of cerebral palsy (CP) contained case reports showing brain injury due to perinatal factors, with evident association between the environment, brain development, and CP. Recent studies indicate that 11 % to 40 % of persons with a clinical diagnosis of CP have monogenic conditions.
Procedures: This review considers recent genetic advances in the diagnostic care of CP and the implications of genomic management for CP.
Main findings: The genes identified in CP directly affect brain development or target other vulnerable tissues. These indirect mechanisms may increase the risk of perinatal stress or severe brain damage, leading to the clinical phenotype of CP. The findings support the idea of multiple possible etiologies leading to CP. As more research focuses on the genetic causes of CP, the list of identified genes provides a starting point for developing CP-specific gene panels. Availability of exome sequencing and budgets for genetic testing are still limited, and genetic markers can help identify individuals with CP who may benefit from genetic testing. There are factors that indicate an increased likelihood of a genomic diagnosis in CP, highlighting the need for a comprehensive genotype-phenotype reference data set to aid variant interpretation in cohorts with CP.
Conclusion: The diagnosis of CP remains clinical, but genetic testing presents an opportunity for the delivery of personalized medicine in populations with CP, adding useful data for targeted management of patients and counseling their families in the contest of genetic guidance.
References
1. Little W. On the influence of abnormal parturition, difficult labours, premature birth, and asphyxia neonatorum, on the mental and physical condition of the child, especially in relation to deformities. Trans Obstet Soc Lond. 1861;3:293-344.
2. Rosenbaum P, Paneth N, Leviton A, et al. A report: the definition and classification of cerebral palsy April 2006. Dev Med Child Neurol Suppl. 2007;109:8–14. doi:10.1111/j.1469-8749.2007.tb12610.x
3. Dan B. A new description of cerebral palsy: Framing, wording, and perspective. Dev Med Child Neurol. 2024;66:822–3. doi:10.1111/dmcn.15500
4. Arnaud C, Ehlinger V, Delobel-Ayoub M, et al. Trends in prevalence and severity of pre/perinatal cerebral palsy among children born preterm from 2004 to 2010: ASPE collaboration study. Front Neurol. 2021;12:624884. doi:10.3389/fneur.2021.624884
5. Smithers-Sheedy H, Waight E, Goldsmith S, et al. Declining trends in birth prevalence and severity of singletons with cerebral palsy of prenatal or perinatal origin in Australia: A population-based observational study. Dev Med Child Neurol. 2022;64:1114–22. doi:10.1111/dmcn.15200
6. McIntyre S, Goldsmith S, Webb A, et al. Global prevalence of cerebral palsy: A systematic analysis. Dev Med Child Neurol. 2022;64(12):1494-1506. doi:10.1111/dmcn.15346
7. Agut T, Alarcon A, Cabañas F, Bartocci M, Martinez-Biarge M, Horsch S; eurUS.brain group. Preterm white matter injury: ultrasound diagnosis and classification. Pediatr Res. 2020;87(Suppl 1):37-49. doi:10.1038/s41390-020-0781-1
8. Hamrick SE, Miller SP, Leonard C, et al. Trends in severe brain injury and neurodevelopmental outcome in premature newborn infants: the role of cystic periventricular leukomalacia. J Pediatr. 2004;145(5):593-9. doi:10.1016/j.jpeds.2004.05.042
9. Back SA, Miller SP. Brain injury in premature neonates: A primary cerebral dysmaturation disorder? Ann Neurol. 2014;75(4):469-86. doi:10.1002/ana.24132
10. Dunbar M, Mineyko A, Hill M, Hodge J, Floer A, Kirton A. Population-based birth prevalence of disease-specific perinatal stroke. Pediatrics. 2020;146(5):e2020013201. doi:10.1542/peds.2020-013201
11. de Vries LS, Jongmans MJ. Long-term outcome after neonatal hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed. 2010;95(3):F220–4. doi: 10.1136/adc.2008.148957.
12. Goldsmith S, McIntyre S, Scott H, et al. Congenital anomalies in children with post-neonatally acquired cerebral palsy: an international data linkage study. Dev Med Child Neurol. 2021;63(4):421–8. doi: 10.1111/dmcn.14750.
13. Werkhoven S, Anderson JH, Robeyns IAM. Who benefits from diagnostic labels for developmental disorders? Dev Med Child Neurol. 2022;64(8):944–9. doi: 10.1111/dmcn.15177.
14. Fahey MC, Maclennan AH, Kretzschmar D, Gecz J, Kruer MC. The genetic basis of cerebral palsy. Dev Med Child Neurol. 2017;59(5):462–9. doi: 10.1111/dmcn.13363.
15. International Cerebral Palsy Genomics Consortium (ICPGC). ICPGC Common Data Elements (CDEs) for genomics studies of cerebral palsy [Internet]. Version 1.4, March 2022. Available from: https://icpgc.wpengine.com/wp-content/uploads/2022/04/ICPGC_CDEs_122-variables_03-2022.pdf. Accessed 2025 Jan 11.
16. Smithers-Sheedy H, Badawi N, Blair E, et al. What constitutes cerebral palsy in the twenty-first century? Dev Med Child Neurol. 2014;56(4):323–8. doi: 10.1111/dmcn.12262.
17. Lu QR, Yuk D, Alberta JA, et al. Sonic hedgehog–regulated oligodendrocyte lineage genes encoding bHLH proteins in the mammalian central nervous system. Neuron. 2000;25(2):317–29. doi: 10.1016/s0896-6273(00)80896-7.
18. Billiards SS, Haynes RL, Folkerth RD, et al. Myelin abnormalities without oligodendrocyte loss in periventricular leukomalacia. Brain Pathol. 2008;18(2):153–63. doi: 10.1111/j.1750-3639.2007.00108.x.
19. Fancy SP, Baranzini SE, Zhao C, et al. Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes Dev. 2009;23(13):1571–85. doi: 10.1101/gad.1806309.
20. Fancy SP, Harrington EP, Yuen TJ, et al. Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nat Neurosci. 2011;14(8):1009–16. doi: 10.1038/nn.2855.
21. Yuen TJ, Silbereis JC, Griveau A,et al. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell. 2014;158(2):383–96. doi: 10.1016/j.cell.2014.04.052.
22. Kayumi S, Pérez-Jurado LA, Palomares M,et al. Genomic and phenotypic characterization of 404 individuals with neurodevelopmental disorders caused by CTNNB1 variants. Genet Med. 2022;24(11):2351–66. doi: 10.1016/j.gim.2022.07.006.
23. Jin SC, Lewis SA, Bakhtiari S, et al. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat Genet. 2020;52(10):1046–56. doi: 10.1038/s41588-020-0695-1.
24. Chopra M, Gable DL, Love-Nichols J, et al. Mendelian etiologies identified with whole exome sequencing in cerebral palsy. Ann Clin Transl Neurol. 2022;9(2):193–205. doi: 10.1002/acn3.51506.
25. Srivastava S, Lewis SA, Cohen JS, et al. Molecular diagnostic yield of exome sequencing and chromosomal microarray in cerebral palsy: a systematic review and meta-analysis. JAMA Neurol. 2022;79(12):1287–95. doi: 10.1001/jamaneurol.2022.3223.
26. Gonzalez-Mantilla PJ, Hu Y, Myers SM, et al. Diagnostic yield of exome sequencing in cerebral palsy and implications for genetic testing guidelines: a systematic review and meta-analysis. JAMA Pediatr. 2023;177(5):472–8. doi: 10.1001/jamapediatrics.2022.6025.
27. Smedley D, Jacobsen JO, Jäger M, et al. Next-generation diagnostics and disease-gene discovery with the Exomiser. Nat Protoc. 2015;10(12):2004–15. doi: 10.1038/nprot.2015.124.
28. Lewis SA, Shetty S, Wilson BA, et al. Insights from genetic studies of cerebral palsy. Front Neurol. 2021;11:625428. doi: 10.3389/fneur.2020.625428.
29. McMichael G, Bainbridge MN, Haan E, et al. Whole-exome sequencing points to considerable genetic heterogeneity of cerebral palsy. Mol Psychiatry. 2015;20(2):176–82. doi: 10.1038/mp.2014.189.
30. Oskoui M, Coutinho F, Dykeman J, Jetté N, Pringsheim T. An update on the prevalence of cerebral palsy: a systematic review and meta-analysis. Dev Med Child Neurol. 2013;55(6):509–19. doi: 10.1111/dmcn.12080.
31. Segel R, Ben-Pazi H, Zeligson S, et al. Copy number variations in cryptogenic cerebral palsy. Neurology. 2015;84(16):1660–8. doi: 10.1212/WNL.0000000000001494.
32. Oskoui M, Gazzellone MJ, Thiruvahindrapuram B, et al. Clinically relevant copy number variations detected in cerebral palsy. Nat Commun. 2015;6:7949. doi: 10.1038/ncomms8949.
33. Zarrei M, Fehlings DL, Mawjee K, et al. De novo and rare inherited copy-number variations in the hemiplegic form of cerebral palsy. Genet Med. 2018;20(2):172–80. doi: 10.1038/gim.2017.83.
34. Corbett MA, van Eyk CL, Webber DL, et al. Pathogenic copy number variants that affect gene expression contribute to genomic burden in cerebral palsy. NPJ Genom Med. 2018;3:33. doi: 10.1038/s41525-018-0073-4.
35. Sinibaldi L, Garone G, Mandarino A, et al. Congenital heart defects in CTNNB1 syndrome: raising clinical awareness. Clin Genet. 2023;104(5):528–41. doi: 10.1111/cge.14410.
36. Kumakura A, Takahashi S, Okajima K, Hata D. A haploinsufficiency of FOXG1 identified in a boy with congenital variant of Rett syndrome. Brain Dev. 2014;36(8):725–9. doi: 10.1016/j.braindev.2013.10.010.
37. England N. National genomic test directory. See ‘National genomic test directory for rare and inherited diseases’ and ‘eligibility criteria document’ at https://www.england.nhs.uk/publication/national-genomic-test-directories.
38. Janzing AM, Eklund E, De Koning TJ, Eggink H. Clinical characteristics suggestive of a genetic cause in cerebral palsy: a systematic review. Pediatr Neurol. 2024;153:144–51. doi: 10.1016/j.pediatrneurol.2023.11.012.
39. Leach EL, Shevell M, Bowden K, Stockler-Ipsiroglu S, van Karnebeek CD. Treatable inborn errors of metabolism presenting as cerebral palsy mimics: systematic literature review. Orphanet J Rare Dis. 2014;9:197. doi: 10.1186/s13023-014-0197-2.
40. Basu AP, Low K, Ratnaike T, Rowitch D. Genetic investigations in cerebral palsy. Dev Med Child Neurol. 2025;67(2):177–85. doi: 10.1111/dmcn.16080.
41. Gargano MA, Matentzoglu N, Coleman B,et al. The Human Phenotype Ontology in 2024: phenotypes around the world. Nucleic Acids Res. 2024;52(D1):D1333–46. doi: 10.1093/nar/gkad1047.
42. Horber V, Grasshoff U, Sellier E, Arnaud C, Krägeloh-Mann I, Himmelmann K. The role of neuroimaging and genetic analysis in the diagnosis of children with cerebral palsy. Front Neurol. 2020;11:628075. doi: 10.3389/fneur.2020.628075.
43. Lee RW, Poretti A, Cohen JS, et al. A diagnostic approach for cerebral palsy in the genomic era. Neuromolecular Med. 2014;16(4):821–44. doi: 10.1007/s12017-014-8318-6.
44. Mohandas N, Bass-Stringer S, Maksimovic J, et al. Epigenome-wide analysis in newborn blood spots from monozygotic twins discordant for cerebral palsy reveals consistent regional differences in DNA methylation. Clin Epigenetics. 2018;10:25. doi: 10.1186/s13148-018-0457-4.
45. Bahado-Singh RO, Vishweswaraiah S, Aydas B, Mishra NK, Guda C, Radhakrishna U. Deep learning/artificial intelligence and blood-based DNA epigenomic prediction of cerebral palsy. Int J Mol Sci. 2019;20(9):2075. doi: 10.3390/ijms20092075.
46. van Eyk CL, Corbett MA, Gardner A, et al. Analysis of 182 cerebral palsy transcriptomes points to dysregulation of trophic signaling pathways and overlap with autism. Transl Psychiatry. 2018;8(1):88. doi: 10.1038/s41398-018-0136-4.
47. Brittain HK, Scott R, Thomas E. The rise of the genome and personalized medicine. Clin Med (Lond). 2017;17(6):545–51. doi: 10.7861/clinmedicine.17-6-545.
48. Stark Z, Ellard S. Rapid genomic testing for critically ill children: time to become standard of care? Eur J Hum Genet. 2022;30(2):142–9. doi: 10.1038/s41431-021-00996-3.
49. Chung CCY, Leung GKC, Mak CCY, et al. Rapid whole-exome sequencing facilitates precision medicine in paediatric rare disease patients and reduces healthcare costs. Lancet Reg Health West Pac. 2020;1:100001. doi: 10.1016/j.lanwpc.2020.100001.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Romana Gjergja Juraški

This work is licensed under a Creative Commons Attribution 4.0 International License.
By publishing in Paediatria Croatica, authors retain the copyright to their work and grant others the right to use, reproduce, and share their research articles in accordance with the Creative Commons Attribution License (CC BY 4.0), which allows others to distribute and build upon the work as long as they credit the author for the original creation.