The role of coding and non-coding DNA regions in the development of genetic disorders
DOI:
https://doi.org/10.13112/pc.1047Keywords:
GENETIC DISEASES, INBORN, INTRONS, EXONS, CHROMOSOME STRUCTURESAbstract
Objective: This review article examines the role of coding and non-coding regions of the human genome in the development of genetic disorders, with a particular focus on different types of genetic variants and their mechanisms of action.
Methods: A comprehensive analysis of the available scientific literature was conducted, focusing on the impact of single nucleotide variants, insertions, deletions, and copy number variations in both coding and non-coding regions of the genome. Special attention was given to mechanisms such as alterations in protein structure and function, regulation of gene expression, and effects on mRNA stability.
Results: Coding variants, including synonymous, nonsense, and missense variants, can significantly affect the structure, function, and stability of proteins, leading to various genetic disorders. Non-coding variants, located in cis- and trans-regulatory elements, play a crucial role in the regulation of gene expression, genome organization, and stabilization. Variants in non-coding regions can influence gene splicing, transcription, translation, and RNA stability, all of which may contribute to different pathological conditions.
Conclusion: Understanding the impact of genetic variants in coding and non-coding regions of the genome is essential for a deeper insight into the mechanisms of pathogenesis and the genetic basis of numerous diseases. The inclusion of non-coding variants in research could contribute to improved diagnostic and therapeutic approaches in medicine.
References
1. Nurk S, Koren S, Rhie A, et al. The complete sequence of a human genome. Science. 2022;376(6588):44–53. doi:10.1126/science.abj6987
2. Maurano MT, Humbert R, Rynes E, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190–5. doi:10.1126/science.1222794
3. Stenson PD, Ball EV, Mort M, et al. Human Gene Mutation Database (HGMD®): 2003 update. Hum Mutat. 2003;21(6):577–81. doi:10.1002/humu.10216
4. Antonarakis SE, Cooper DN. Human Gene Mutation in Inherited Disease. In: Emery and Rimoin’s Principles and Practice of Medical Genetics. 2013;1–48.
5. Dhindsa RS, Copeland BR, Mustoe AM, Goldstein DB. Natural selection shapes codon usage in the human genome. Am J Hum Genet. 2020;107(1):83–95. doi:10.1016/j.ajhg.2020.05.014
6. Rosen EM, Fan S, Pestell RG, Goldberg ID. BRCA1 gene in breast cancer. J Cell Physiol. 2003;196(1):19–41. doi:10.1002/jcp.10212
7. Montera M, Piaggio F, Marchese C, et al. A silent mutation in exon 14 of the APC gene is associated with exon skipping in a FAP family. J Med Genet. 2001;38(12):863–7. doi:10.1136/jmg.38.12.863
8. Temaj G, Telkoparan-Akillilar P, Nuhii N, Chichiarelli S, Saha S, Saso L. Recoding of Nonsense Mutation as a Pharmacological Strategy. Biomedicines. 2023;11(3):659. doi:10.3390/biomedicines11030659
9. Boyle MP, De Boeck K. A new era in the treatment of cystic fibrosis: correction of the underlying CFTR defect. Lancet Respir Med. 2013;1(2):158–63. doi:10.1016/S2213-2600(13)70010-8
10. Sharma J, Du M, Wong E, et al. A small molecule that induces translational readthrough of CFTR nonsense mutations by eRF1 depletion. Nat Commun. 2021;12(1):4358. doi:10.1038/s41467-021-24613-z
11. Petrosino M, Novak L, Pasquo A, et al. Analysis and interpretation of the impact of missense variants in cancer. Int J Mol Sci. 2021;22(11):5416. doi:10.3390/ijms22115416
12. Morais VA, Verstreken P, Roethig A, et al. Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol Med. 2009;1(2):99–111. doi:10.1002/emmm.200900032
13. Webster MK, Donoghue DJ. Constitutive activation of fibroblast growth factor receptor 3 by the transmembrane domain point mutation found in achondroplasia. EMBO J. 1996;15(3):520–7. doi:10.1002/j.1460-2075.1996.tb00317.x
14. Bellus GA, Spector EB, Speiser PW, et al. Distinct missense mutations of the FGFR3 lys650 codon modulate receptor kinase activation and the severity of the skeletal dysplasia phenotype. Am J Hum Genet. 2000;67(6):1411-21. doi:10.1086/316876
15. Ball EV, Stenson PD, Abeysinghe SS, Krawczak M, Cooper DN, Chuzhanova NA. Microdeletions and microinsertions causing human genetic disease: common mechanisms of mutagenesis and the role of local DNA sequence complexity. Hum Mutat. 2005;26:205-213. doi:10.1002/humu.20239
16. Walsh T, Mcclellan JM, Mccarthy SE, et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science. 2008;320:539–43. doi:10.1126/science.1155176
17. Yu CE, Dawson G, Munson J, et al. Presence of large deletions in kindreds with autism. Am J Hum Genet. 2002;71(1):100–15. doi:10.1086/341702
18. Mao G, Pan X, Bei B, et al. Identification and characterization of OGG1 mutations in patients with Alzheimer’s disease. Nucleic Acids Res. 2007;35(8):2759–66. doi:10.1093/nar/gkm182
19. Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics. 1988;2(1):90–5. doi:10.1016/0888-7543(88)90126-2
20. Waldmüller S, Sakthivel S, Saadi AV, et al. Novel deletions in MYH7 and MYBPC3 identified in Indian families with familial hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2003;35(6):623–36. doi:10.1016/S0022-2828(03)00079-2
21. Herman DS, Lam L, Taylor MRG, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366(7):619–28. doi:10.1056/NEJMoa1110180
22. Keum JW, Shin A, Gillis T, et al. The HTT CAG-expansion mutation determines age at death but not disease duration in Huntington disease. Am J Hum Genet. 2016;98(2):287–98. doi:10.1016/j.ajhg.2015.12.010
23. Cremer M, Cremer T. Nuclear compartmentalization, dynamics, and function of regulatory DNA sequences. Genes Chromosomes Cancer. 2019;58(7):427–36. doi:10.1002/gcc.22730
24. Ellingford JM, Ahn JW, Bagnall RD, et al. Recommendations for clinical interpretation of variants found in non-coding regions of the genome. Genome Med. 2022;14(1):73. doi:10.1186/s13073-022-01026-2
25. Peña-Martínez EG, Rodríguez-Martínez JA. Decoding non-coding variants: Recent approaches to studying their role in gene regulation and human diseases. Front Biosci (Schol Ed). 2024;16(1):4. doi:10.2741/S485
26. Lee JA, Madrid RE, Sperle K, et al. Spastic paraplegia type 2 associated with axonal neuropathy and apparent PLP1 position effect. Ann Neurol. 2006;59(2):398–403. doi:10.1002/ana.20861
27. Benito-Sanz S, Royo JL, Barroso E, et al. Identification of the first recurrent PAR1 deletion in Léri-Weill dyschondrosteosis and idiopathic short stature reveals the presence of a novel SHOX enhancer. J Med Genet. 2012;49(7):442–50. doi:10.1136/jmedgenet-2012-100832
28. Pop R, Conz C, Lindenberg KS, et al. Screening of the 1 Mb SOX9 5’ control region by array CGH identifies a large deletion in a case of campomelic dysplasia with XY sex reversal. J Med Genet. 2004;41(4):e47. doi:10.1136/jmg.2003.015229
29. Cox JJ, Willatt L, Homfray T, Woods CG. A SOX9 duplication and familial 46,XX developmental testicular disorder. N Engl J Med. 2011;364(1):91–3. doi:10.1056/NEJMc1012413
30. Benko S, Fantes JA, Amiel J, et al. Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nat Genet. 2009;41(3):359–64. doi:10.1038/ng.333
31. Klopocki E, Schulze H, Strauss G, et al. Complex inheritance pattern resembling autosomal recessive inheritance involving a microdeletion in thrombocytopenia-absent radius syndrome. Am J Hum Genet. 2007;80(2):232–40. doi:10.1086/510690
32. Albers CA, Paul DS, Schulze H, et al. Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat Genet. 2012;44(4):435–9, S1-2. doi:10.1038/ng.2209
33. Wieczorek D, Newman WG, Wieland T, et al. Compound heterozygosity of low-frequency promoter deletions and rare loss-of-function mutations in TXNL4A causes Burn-McKeown syndrome. Am J Hum Genet. 2014;95(6):698–707. doi:10.1016/j.ajhg.2014.11.001
34. Dixon JR, Selvaraj S, Yue F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485(7398):376–80. doi:10.1038/nature11082
35. Lupiáñez DG, Kraft K, Heinrich V, et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell. 2015;161(5):1012–25. doi:10.1016/j.cell.2015.04.004
36. Tena JJ, Santos-Pereira JM. Topologically associating domains and regulatory landscapes in development, evolution and disease. Front Cell Dev Biol. 2021;9:702787. doi:10.3389/fcell.2021.702787
37. Zhang P, Philippot Q, Ren W, et al. Genome-wide detection of human variants that disrupt intronic branchpoints. Proc Natl Acad Sci U S A. 2022;119(44):e2211194119. doi:10.1073/pnas.2211194119
38. King K, Flinter FA, Nihalani V, Green PM. Unusual deep intronic mutations in the COL4A5 gene cause X linked Alport syndrome. Hum Genet. 2002;111(6):548–54. doi:10.1007/s00439-002-0849-5
39. Richards AJ, McNinch A, Whittaker J, et al. Splicing analysis of unclassified variants in COL2A1 and COL11A1 identifies deep intronic pathogenic mutations. Eur J Hum Genet. 2012;20(5):552–8. doi:10.1038/ejhg.2011.211
40. Popp MW-L, Maquat LE. Organizing principles of mammalian nonsense-mediated mRNA decay. Annu Rev Genet. 2013;47(1):139–65. doi:10.1146/annurev-genet-111312-085539
41. Dobkin C, Pergolizzi RG, Bahre P, Bank A. Abnormal splice in a mutant human beta-globin gene not at the site of a mutation. Proc Natl Acad Sci U S A. 1983;80(5):1184–8. doi:10.1073/pnas.80.5.1184
42. Cunha K, Oliveira N, Fausto A, et al. Hybridization capture-based next-generation sequencing to evaluate coding sequence and deep intronic mutations in the NF1 gene. Genes (Basel). 2016;7(12):133. doi:10.3390/genes7120133
43. Gonorazky H, Liang M, Cummings B, et al. RNA seq analysis for the diagnosis of muscular dystrophy. Ann Clin Transl Neurol. 2016;3(1):55–60. doi:10.1002/acn3.255
44. Antonellis A, Dennis MY, Burzynski G, et al. A rare myelin protein zero (MPZ) variant alters enhancer activity in vitro and in vivo. PLoS One. 2010;5(12):e14346. doi:10.1371/journal.pone.0014346
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Maja Oroz, Feodora Stipoljev, Ana Mustapić, Tamara Vuk

This work is licensed under a Creative Commons Attribution 4.0 International License.
By publishing in Paediatria Croatica, authors retain the copyright to their work and grant others the right to use, reproduce, and share their research articles in accordance with the Creative Commons Attribution License (CC BY 4.0), which allows others to distribute and build upon the work as long as they credit the author for the original creation.