Diagnostic possibilities in clinical genetics today and how to interpret the findings

Authors

  • Silvija Pušeljić Klinika za pedijatriju, Klinički bolnički centar Osijek, Josipa Huttlera 4, 31000 Osijek
  • Nora Perić Klinika za pedijatriju, Klinički bolnički centar Osijek, Josipa Huttlera 4, 31000 Osijek
  • Ema Kuna Klinika za pedijatriju, Klinički bolnički centar Osijek, Josipa Huttlera 4, 31000 Osijek
  • Toni Maloča Klinika za pedijatriju, Klinički bolnički centar Osijek, Josipa Huttlera 4, 31000 Osijek
  • Ivan Školka Klinika za pedijatriju, Klinički bolnički centar Osijek, Josipa Huttlera 4, 31000 Osijek
  • Višnja Tomac Klinika za pedijatriju, Klinički bolnički centar Osijek, Josipa Huttlera 4, 31000 Osijek
  • Nika Pušeljić Zavod za hitnu medicinu Osječko baranjske županije, J. Huttlera 2, Osijek
  • Luka Perić Zavod za onkologiju, Klinički bolnički centar Osijek, J. Huttlera 4, Osijek

DOI:

https://doi.org/10.13112/pc.1042

Keywords:

GENETIC TESTING, CHILD, HIGH-THROUGHPUT NUCLEOTIDE SEQUENCING

Abstract

The development of medical genetics has led to its integration into almost all areas of medicine. The clinical picture of a genetic disorder is most often recognized in childhood. Some genetic disorders may also be rare diseases and recognition "from phenotype to genotype" is highly complex due to the tremendous clinical heterogeneity. In addition to the fact that clinical features can be variable within a single gene mutation, symptoms, often non-specific, can change depending on the child's age, and the phenotype can vary even within the same family. Most patients with complex disorders require a multidisciplinary approach and a combination of many diagnostic procedures to determine all the clinical features of the disease, all of which are time-consuming and expensive. When we perform an extended clinical work-up and detect deviations that raise a diagnostic suspicion, we need to choose one of the diagnostic genetic tests to confirm the diagnosis because confirmation usually represents the end of a diagnostic odyssey that can, sometimes, last for years. In everyday clinical practice, the complexity of diagnosing genetic disorders arises from genetic variability and the heterogeneity of the clinical picture, but also from the insufficient number of clinical geneticists and lack of clinical experience, coupled with the limited availability of genetic testing in our country. Defining clinical indications and guidelines is essential for the effective application of old and new genetic testing technologies in everyday work. In addition, good multidisciplinary cooperation is necessary between the physician who refers the patient for genetic testing, the clinical geneticist, the laboratory medical geneticist, and physicians specializing in individual specialties.

References

1. Yoo HW. Genetic testing in clinical pediatric practice. Clin Exp Pediatr. 2010;53(3):273–85.

2. Centers for Disease Control and Prevention. Genetic testing [Internet]. Atlanta (GA): CDC; 2024. Available from: https://www.cdc.gov/genomics-and-health/counseling-testing/genetic-testing.html.

3. Peterlin B, Maver A. Primjena sekvenciranja nove generacije u pedijatrijskoj dijagnostici. Paediatr Croat. 2016;60(Suppl 1):70–1.

4. McPherson E. Genetic diagnosis and testing in clinical practice. Clin Med Res. 2006;4(2):123–9. doi: 10.3121/cmr.4.2.123.

5. Godino L, Turchetti D, Jackson L, Hennessy C, Skirton H. Impact of presymptomatic genetic testing on young adults: a systematic review. Eur J Hum Genet. 2016;24(4):496–503. doi: 10.1038/ejhg.2015.181.

6. Cariati F, D’Argenio V, Tomaiuolo R. Innovative technologies for diagnosis and screening of genetic diseases in antenatal age. J Lab Precis Med. 2020;5. doi: 10.21037/jlpm-20-98.

7. Barišić I. Aktualne teme u genetičkom informiranju. Paediatr Croat. 2016;60:24–30.

8. Youssef E, Kirkdale CL, Wright DJ, Guchelaar HJ, Thornley T. Estimating the potential impact of implementing pre-emptive pharmacogenetic testing in primary care across the UK. Br J Clin Pharmacol. 2021;87(7):2907–25. doi: 10.1111/bcp.14689.

9. Panacer KS. Ethical issues associated with direct-to-consumer genetic testing. Cureus. 2023;15(6):e39964. doi: 10.7759/cureus.39964.

10. Ferguson-Smith MA. History and evolution of cytogenetics. Mol Cytogenet. 2015;8:19. doi: 10.1186/s13039-015-0132-0.

11. Rodríguez L, Barros E, Skaarup Murray J. Sometimes karyotype resolves the case! Front Genet. 2024;15:1. doi: 10.3389/fgene.2024.1298743.

12. Marshall CR, Noor A, Vincent JB, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet. 2008;82(2):477–88. doi: 10.1016/j.ajhg.2007.12.009.

13. Pinkel D, Segraves R, Sudar D, et al. High-resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet. 1998;20(2):207–11. doi: 10.1038/2524.

14. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. doi: 10.1038/35057062.

15. Stipoljev F, Oroz M, Vičić A. Genomski dijagnostički algoritmi u obiteljima s djecom s neurorazvojnim poremećajima. Liječ Vjesn. 2023;145(Suppl 1):256–63.

16. Lovrečić L, Peterlin B. Molekularna kariotipizacija – nov pristup u kliničkoj i laboratorijskoj genetici. Med Flum. 2014;50(2):181–7.

17. Jezkova J, Heath J, Williams A, et al. Exon-focused targeted oligonucleotide microarray design increases detection of clinically relevant variants across multiple NHS genomic centres. NPJ Genom Med. 2020;5:28. doi: 10.1038/s41525-020-00139-2.

18. Kucińska A, Hawuła W, Rutkowska L, et al. The use of CGH arrays for identifying copy number variations in children with autism spectrum disorder. Brain Sci. 2024;14(3):273. doi: 10.3390/brainsci14030273.

19. Gorcenco S, Ilinca A, Almasoudi W, Kafantari E, Lindgren AG, Puschmann A. New generation genetic testing entering the clinic. Parkinsonism Relat Disord. 2020;73:72–84. doi: 10.1016/j.parkreldis.2020.02.008.

20. Saudi Mendeliome Group. Comprehensive gene panels provide advantages over clinical exome sequencing for Mendelian diseases. Genome Biol. 2015;16:134. doi: 10.1186/s13059-015-0701-3.

21. DiStefano MT, Goehringer S, Babb L, et al. The Gene Curation Coalition: A global effort to harmonize gene-disease evidence resources. Genet Med. 2022;24(8):1732–42. doi: 10.1016/j.gim.2022.05.009.

22. Musunuru K, Hershberger RE, Day SM, et al. Genetic testing for inherited cardiovascular diseases: a scientific statement from the American Heart Association. Circ Genom Precis Med. 2020;13(4):e000067. doi: 10.1161/HCG.0000000000000067.

23. Papadopoulou E, Bouzarelou D, Tsaousis G, et al. Application of next-generation sequencing in cardiology: current and future precision medicine implications. Front Cardiovasc Med. 2023;10:1202381. doi: 10.3389/fcvm.2023.1202381.

24. Arteche-López A, Ávila-Fernández A, Riveiro Álvarez R, et al. Five years’ experience of clinical exome sequencing in a Spanish single center. Sci Rep. 2022;12:19209. doi: 10.1038/s41598-022-23994-2.

25. Marshall CR, Chowdhury S, Taft RJ, et al.; Medical Genome Initiative. Best practices for the analytical validation of clinical whole-genome sequencing intended for the diagnosis of germline disease. NPJ Genom Med. 2020;5:47. doi: 10.1038/s41525-020-00143-6.

26. Alvarez-Mora MI, Rodríguez-Revenga L, Jodar M, et al. Implementation of exome sequencing in clinical practice for neurological disorders. Genes (Basel). 2023;14(4):813. doi: 10.3390/genes14040813.

27. Bagger FO, Borgwardt L, Jespersen AS, et al. Whole genome sequencing in clinical practice. BMC Med Genomics. 2024;17(1):39. doi: 10.1186/s12920-024-01602-0.

28. Wright CF, Campbell P, Eberhardt RY, et al. Genomic diagnosis of rare pediatric disease in the United Kingdom and Ireland. N Engl J Med. 2023;388(17):1559–71. doi: 10.1056/NEJMoa2209205.

29. Palmer EE, Sachdev R, Macintosh R,et al. Diagnostic yield of whole genome sequencing after nondiagnostic exome sequencing or gene panel in developmental and epileptic encephalopathies. Neurology. 2021;96(13):e1770–82. doi: 10.1212/WNL.0000000000011654.

30. Goodman DM, Lynm C, Livingston EH. Genomic medicine. JAMA. 2013;309(14):1544. doi: 10.1001/jama.2013.3243.

31. Rubanovich CK, Cheung C, Mandel J, Bloss CS. Physician preparedness for big genomic data: a review of genomic medicine education initiatives in the United States. Hum Mol Genet. 2018;27(R2):R250–8. doi: 10.1093/hmg/ddy167.

32. Donohue KE, Gooch C, Katz A, Wakelee J, Slavotinek A, Korf BR. Pitfalls and challenges in genetic test interpretation: an exploration of genetic professionals’ experience with interpretation of results. Clin Genet. 2021;99(5):638–49. doi: 10.1111/cge.13944.

33. Mahon SM. Coordination of genetic care: more important and complicated than it seems. J Natl Compr Canc Netw. 2019;17(11):1272–6. doi: 10.6004/jnccn.2019.7343.

34. Miller DT, Adam MP, Aradhya S, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749–64. doi: 10.1016/j.ajhg.2010.04.006.

35. Manickam K, McClain MR, Demmer LA, et al.; ACMG Board of Directors. Exome and genome sequencing for pediatric patients with congenital anomalies or intellectual disability: an evidence-based clinical guideline of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021;23(11):2029–37. doi: 10.1038/s41436-021-01242-6.

36. Richards S, Aziz N, Bale S, et al.; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. doi: 10.1038/gim.2015.30.

37. Rehm HL, Alaimo JT, Aradhya S, et al.; Medical Genome Initiative Steering Committee. The landscape of reported VUS in multi-gene panel and genomic testing: time for a change. Genet Med. 2023;25(12):100947. doi: 10.1016/j.gim.2023.100947.

38. Miller DT, Lee K, Gordon AS, et al.; ACMG Secondary Findings Working Group. Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2021 update: a policy statement of the American College of Medical Genetics and Genomics (ACMG). Genet Med. 2021;23(8):1391–8. doi: 10.1038/s41436-021-01172-3.

Published

2025-04-02

How to Cite

Pušeljić, S., Perić, N., Kuna, E., Maloča, T., Školka, I., Tomac, V., Pušeljić, N., & Perić, L. (2025). Diagnostic possibilities in clinical genetics today and how to interpret the findings. Paediatria Croatica, 69(Suppl 2), 3-11. https://doi.org/10.13112/pc.1042

Similar Articles

1-10 of 121

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)